7.逻辑结构

初看起来,逻辑学似乎是结构的特别有利的领域,因为逻辑学是研究认识的形式,而不是研究认识的内容的。而且还进一步,当我们在(第六节已经指出的)“自然数”这个:“自然”的意义上提出自然逻辑这个问题(现时逻辑学家的看法不对)时,我们很快就看到,逻辑形式处理过的内容仍然有某些形式,具有可以逻辑化的形式的方向,这些内容的形式包括了一些加工得更差的内容,但这些内容又是有某些形式的;如此依次类推,每一个成分对于比它高级的成分来说是内容,而对于比它低级的成分来说是形式。

但是,固然这些形式上的嵌套接合关系和形式与内容的相对性,对于结构主义理论说来都是极有启发意义的,逻辑学对于这些关系和相对性的问题却并不感觉兴趣,只是在形式化的界限问题(参看第8节)上,才间接地有关。符号逻辑或数理逻辑(今天唯一算得上的逻辑)是建立在这上升的形式一内容阶梯上任意一点的,不过要有使这任意一点成为一个绝对起点的系统化的意图;这样一个意图是合理的,因为这个意图借助于设定公理的方法是可以实现的。事实上,只须选择一定数目的概念和一定数目的命题作为起点;把这些概念看作是不能下定义的,意思是说,这些概念是用来为其他概念下定义的;并且把这些命题看作是不要加以论证的(因为对于所选择的体系而言,选择这些概念是自由的),而这些命题却是为论证服务的。不过,这些基本的概念和公理应该是充分的,它们相互之间可以并存,并且要减少到最低限度,就是说不是多余的。其次,要只用运算程序的形式给自己定出一些构造规则;于是形式化就成为一个自给自足的体系,并不求助于外在的直觉,而且这个体系的起点在某种意义上是绝对的。不言而喻,还有一个形式化的上界问题,还有要知道那些不能下定义和不要加以论证的范围有多大,这些认识论的问题。但是,从逻辑学家所处的形式观点来看,这儿无疑就是唯一的一个在纯粹是内部调整意义上、也就是在完全自身调节作用的意义上、绝对自主的例子。

因此,从广义的观点出发,我们可以同意,每一个逻辑体系(逻辑体系是有无数个的)都能组成一个结构,因为每一个逻辑体系都具有整体性、转换性和自身调整性这三个性质。然而,一方面,这是些专门为此(ad hoc)建立起来的“结构”。而不管我们是否说出来,结构主义的真实倾向却是要达到“自然的”结构;“自然的”这个概念有点模棱两可,并且经常是名声不好的,它或者是指在人性中深深扎根的意思(有重又回到先验论上去的危险),或者相反是指有一个某种意义上独立于人性的绝对存在,它只是应该适应人性而已(这第二个意思有重又回到超经验的本质上去的危险)。

另方面,这里有一个更严重的问题:一个逻辑体系,就它所证明的定理的整体而言,就是一个封闭性的整体。但是,这只是一个相对的整体,因为对那些它不加以证明的定理而言(特别是那些不能决定真假的定理,原因是形式化有限度),这个体系的上方是开放着的;而且这个体系的下方也是开放着的,原因是作为出发点的概念和公理,包含着一个有许多未加说明的成分的世界。

后面这个问题,是我们称之为逻辑学的结构主义所特别关心的问题。因为逻辑学结构主义所明白说出来的企图,就是要找出,在被所设定的公理法定了的作为出发点的那些运算下面,可能有些什么。而我们已经找到的,乃是一个若干真正结构的整体,不但可以和数学家所使用的大结构——这些大结构使人在直觉上必须接受,与它们的形式化无关——相比拟;而且与数学家所使用的某些大结构是有同一性的,于是它又成了我们今天叫做普通代数学的这个结构理论的一部分。

特别使人感到惊奇的,是十九世纪符号逻辑学的伟大创始人之一——布尔的逻辑学,构成了一种代数学,叫做布尔代数学。布尔代数学保证了“类”的逻辑和传统形式下的命题逻辑的解释,而且相当于模数为2的算术,就是说它唯一的值是0和1。可是,我们可以从这个代数学中引出一个“网”的结构(参看第6节),只要在所有网结构的共同特性上,增加一个分配性的特性,一个包含着一个极大成分和一个极小成分的特性,还有主要的一个是互补性的特性(这样,每个项都包含了它的逆向或否定项):于是人们称之为“布尔网”。

另一方面,排中选言的(或者是p或者是q,不能兼是两者)和等价的(既是p又是q,或者既不是p也不是q)这两种布尔运算,二者都能组成一个群,而且这两个群之中的每一个群,都可以转换成一个交替的环。这样,我们看到,在逻辑学上又找到了数学上通用的两个主要结构。

但是,此外我们还能抽绎出一个更普遍的群,作为克莱因四元群(groupede quaternalite)的一个特殊情况。假定是这样一个蕴涵命题p => q的运算:如果我们把这个命题改成逆命题(N),就得到p·(-q)可这就否定了蕴涵关系)。如果我们把p => q命题的两个项对调,或者单保持原来的蕴涵关系形式而放在否定了的命题之间(-p =>-q),我们就得到它的互反性命题R,即q=>p。如果在p=>q命题的正常形式(也就是p.q V (-p).q V (-p).(-q)中,我们把符号(V)和(·)进行交换,我们就得到p=>q命题的对射性命题C,即(-p).q。最后,如果我们保留p= >q命题不变,我们就得到了恒等性变换I。于是,我们就以代换的方式得到:NR=C;NC=R;CR=N;还有NRC=I。

这样,就有了一个四种变换的群,其二值命题逻辑运算(命题可以是二元的、三元的、等等)提供的例子,和用它的“部分的集合”的那些成分组成四元运算所得到的例子有同样的多;这些四元运算中的某些例子可以是:I=R和N=C,或者I=C和N=R;但是,自然从来不能I=N的。

总而言之,在逻辑学中存在着一些完全意义的“结构”,这是很明确的,而且对于结构主义理论来说,更加有意义的是,我们可以从自然思维的发展中追溯这些结构在心理上的起源。所以,这里有一个问题,要留在将来再加以讨论。