不过,其中仍有机巧。随着事情的进展,帕卡德注意到物种加入的次序很有关系。他获悉其他生态学家发现了同样的情况。利奥波德的一位同事发现,通过在杂草丛生的土地,而不是像利奥波德那样在新开垦的土地上播种北美草原的种子,能够获得更接近真实的北美草原。利奥波德曾经担心争强好胜的杂草会扼杀野花,但是,杂草丛生的土地比耕种过的土地更像北美大草原。在杂草丛生的陈年地块上,有一些杂草是后来者,而它们中有些又是大草原的成员。它们的提早到来能加速向草原系统的转变。而在耕耘过的祼地上,迅速抽芽的杂草极具侵略性,那些有益的“后来者们”加入这个集体的时间过晚。这好比在盖房子时先灌注了水泥地基,然后钢筋才到。因而,次序很重要。
田纳西州立大学生态学家斯图亚特·皮姆将各种次序——如经典的刀耕火种——与自然界上演了无数次的次序作了比较。“从进化的意义上来说,参与游戏的选手们知道先后的顺序是什么。”进化不仅发展了群落的机能,而且还对群落的形成过程进行了细调,直到群落最终能够成为一个整体。还原生态系统群落则是逆向而行。“当我们试图还原一块草原或一块湿地的时候,我们是在沿着该群落未曾实践过的道路前行,”皮姆说。我们的起点是一个旧农场,而大自然的起点则可能是一个万年前的冰原。皮姆自问道:我们能通过随机加入物种,组合出一个稳定的生态系统吗?要知道,人类还原生态系统的方式恰恰带有很强的随机性。
在田纳西州立大学的实验室里,生态学家皮姆和吉姆·德雷克一直在以不同的随机次序组合微生态系统的元素,以揭示次序的重要性。他们的微观世界是个缩影。他们从15至40种不同的单一水藻植株和微生物入手,依次把这些物种以不同的组合形式及先后次序放入一个大烧瓶。10到15天之后,如果一切进展顺利,这个水生物的混合体就会形成稳定的、自繁殖的泥地生态——一种很特别的、各物种相互依存的混合体。另外,德雷克还在水族箱里和流水中分别建立了人工生态。将它们混在一起后,让其自然运行,直到稳定下来。“你看看这些群落,普通人也能看出它们的不同,”皮姆评论道。“有些是绿色的,有些是棕色的,有些是白色的。有趣的是没办法预先知道某种特定的物种组合会如何发展。如同大多数的复杂系统一样,必须先把它们建立起来,在运行中才能发现其秘密。”
起初,人们也不是很清楚是否会容易地得到一个稳定的系统。皮姆曾以为,随机生成的生态系统可能会“永无休止地徘徊,由一种状态转为另一种状态,再转回头来,永远都不会到达一个恒定状态。”然而,人造生态系统并没有徘徊。相反,令人惊讶的是,皮姆发现了“各种奇妙的现象。比如说,这些随机的生态系统绝对没有稳定方面的麻烦。它们最共同的特征就是它们都能达到某种恒定状态,而且通常每个系统都有其独有的恒定状态。”
如果你不介意获得的系统是什么样子,那么要获得一个稳定的生态系统是很容易的。这很令人吃惊。皮姆说:“我们从混沌理论中得知,许多确定系统都对初始条件极其敏感——一个小小的不同就会造成它的混乱。而这种生态系统的稳定性与混沌理论相对立。从完全的随机性入手,你会看到这些东西聚合成某种更有条理性的东西,远非按常理所能解释的。这就是反混沌。”
为了补充他们在试管内的研究,皮姆还设立了计算机模拟试验——在计算机里构建简化的生态模型。他用代码编写了需要其它特定物种的存在才能生存下来的人造“物种”,并设定了弱肉强食的链条:如果物种B的数量达到一定密度,就能灭绝物种A。(皮姆的随机生态模型与斯图亚特·考夫曼的随机遗传网络系统相似。见第二十章)。每个物种都在一个巨大的分布式网络中与其它物种有松散的关联。对同一物种列表的成千上万种随机组合进行了运行后,皮姆得到了系统能够稳定下来的频度。所谓稳定,即指在小扰动下,如引入或移除个别物种,不会破坏整体的稳定性。皮姆的结果与其瓶装微观生物世界的结果是相呼应的。
按皮姆的说法,计算机模型显示,“当混合体中有10至20种成分时,其峰值(或者说稳定点)可能有十几到上百个。假如你重演一遍生命的进程,会达到不同的峰值。”换句话说,投放了同样的一些物种后,初始的无序状态会朝向十几个终点。而改变哪怕是一个物种的投入顺序,都足以使系统由一个结果变成另一个。系统对初始条件是敏感的,但通常都会转为有序状态。
皮姆把帕卡德还原伊利诺斯大草原(或者应该说是稀树大草原)的工作看成是对他的发现的佐证:“帕卡德第一次试图组合那个群落的时候失败了,从某种意义上说,是由于他得不到所需的物种,而在清除不想要的物种时又遇到很多麻烦。一旦引进了那些古怪但却合适的物种,则离恒定状态就相当接近了,所以它能容易地达到那个状态,并可能一直保持下去。”
皮姆和德雷克发现了一个原则,它对任何关注环境以及对创建复杂系统感兴趣的人都是重要的经验。“要想得到一块湿地,不能只是灌入大量的水就指望万事大吉了。”皮姆告诉我,“你所面对的是一个已经历经了千万年的系统。仅仅开列一份丰富多样的物种清单也是不够的。你还必须有组合指南。”